Kérdezni tudni kell

Vannak kérdések és vannak kijelentések, amelyekre a matematikai logika is nagyon nehezen tud választ adni. A világ minden kérdésére nem lehet válaszolni. két okból ... Lukács Béla fizikus gondolatai.
Két okból nem lehet válaszolni minden kérdésre. Egyrészt ugye bizonyos kérdések nyelvtanilag helyesek, de nincs értelmük, vagy nincs rájuk válasz. Nem tudjuk, hogy melyik kérdésekre nincs válasz, és melyikekre van, csak még nem ismerjük, de tudjuk azt, hogy meg lehet fogalmazni olyan kérdést, amely nyelvtanilag rendben van, de nincs rá válasz. Azonnal mondok erre egy példát. De a másik dolog az, hogy ha valahogy meg tudunk szabadulni ezektől a kérdésektől, akkor a megválaszolható kérdések még mindig nagyon sokan vannak, és akkor az ember specializálódik, hogy én most ezzel akarok foglalkozni, ezt akarom megcsinálni, a többit csinálja meg valaki más. És akkor természetesen a világ sok-sok kérdését félre kell tennünk, és nem gondolnunk rá. Mondjuk az ember itt él ebben a társadalomban, és akkor politikai kérdések merülnek föl benne. Nem is az, hogy miért csinálja X párt azt, amit, mert azt nyilván azért csinálja, mert úgy gondolja, hogy az neki jó lesz, hanem az, hogy mit kellene csinálni mondjuk a társadalombiztosítással. Ezek teljesen normális, elvben megválaszolható és fontos kérdések, de hogyha ezzel foglalkozik az ember ahelyett, hogy azt a dolgát végezné, amihez jobban ért, akkor a dolgát elhanyagolná, ebben meg nem érne el előrehaladást. Emiatt van az, hogy például két fizikus a szakmáról akkor is tud beszélni, ha két ellentétes politikai irányzathoz tartozik, pedig egy csomó tudományban az ilyenek már nem is tudnak beszélni egymással. A fizikusban van bizonyos képesség arra, hogy elválassza egymástól azt, ami a szakmájához tartozik és ami nem. Na de azt mondtam, hogy mondok egy példát arra, hogy lehet egy nyelvtanilag helyes mondatot mondani, aminek azonban nincs értelme. Képzeljünk el egy mondatot, amely Copilco gömb alakú gúlájáról mond valamit. Mondjuk azt, hogy ki van rakva ezüst lemezekkel. A város talán létezik valahol Mexikóban, piramisa is volt, amikor a Cortez arrafelé járt, de gömb alakú gúla nem létezhet. Mert ugye a gömb az gömb, annak megvan a mértani definíciója, a gúla pedig egy ferde oldalú, görbe alapú test. Gömb alakú gúla nem létezhet. De nyelvtanilag helyes módon lehet egy állítást tenni róla. Akkor most helyes ez az állítás vagy helytelen? A matematikai logikus mond is rá valamit, de azt elfelejtettem. A lényeg az, hogy logikailag lehetetlen kérdésekre lehet nyelvtanilag helyes válaszokat adni. Ezek az állítások valamilyen értelemben nem lesznek igazak, mert amire vonatkoznak, az nem létezik. Gömb alakú piramis nem létezhet. Önellentmondó. Na most kentaurok nem léteznek, de nem is létezhetnek? Ez már egy ravasz kérdés, mert ha valaki be tudná bizonyítani, hogy hatlábú emlősállat nem létezhet, az biológiailag elég fontos eredmény lenne, de ezt még senkinek nem sikerült bizonyítani. Ha viszont valami logikailag létezhet, akkor már tehetek rá olyan kijelentéseket is, amelyek legalább elvben ellenőrizhetők. Tehát ezt tudom mondani arra, hogy vannak olyan kérdések, amelyekre nem is lehet válaszolni, mert a kérdés vagy önellentmondó, vagy annyira határozatlan, hogy többféle választ is lehetne rá adni, de nyelvtanilag ezek még mindig szabályszerű kérdések. Ezekre a kérdésekre mindenesetre nem kell válaszolni, de a probléma az, hogy nem tudom, melyek ezek a kérdések, mert a nyelv nem igazít el engem. Ez úgy derül ki, hogy az ember egy ideig megpróbál rájuk választ adni, aztán kiderül, hogy valahol önellentmondás van, és akkor készen vagyunk, mert ha önellentmondás van benne, akkor nincs rá válasz. Mondjuk az emberiség 1500 éve azt hiszi, hogy az a kérdés, hogy isten létezik-e vagy nem, logikailag eldönthető. Istenbizonyítékokat gyártottak filozófusok, aztán más filozófusok azt akarták megmutatni, hogy istenbizonyítékokat nem lehet gyártani. Itt tartunk. Van egy olyan rendkívül primitív, de azért nem rossz érvelés, hogy tud-e isten akkora követ teremteni, amekkorát nem tud fölemelni. Ugye ha tud, akkor nem mindenható, mert nem tudja fölemelni, de ha nem tud, akkor sem, mert nem tudott ilyet teremteni. Erre azt mondja a matematikai logika Bertrand Russell óta, hogy bizonyos halmazelméleti kérdéseket nem lehet föltenni. Vagy ott van az a régi kérdés, hogy azt mondta a krétai, hogy minden krétai hazudik, és van ennek a másik változata, hogy utasításba adja a hadsereg borbélyának, hogy mindenkit meg kell borotválnia, aki nem tud megborotválkozni, de senkit nem szabad megborotválnia, aki maga is meg tud. Tehát vannak kérdések és vannak kijelentések, amelyekre a matematikai logika is nagyon nehezen tud választ adni.
Forrás: Révai Gábor: Beszélgetések nem csak tudományról (Csányi Vilmos etológussal és Lukács Béla fizikussal) – Corvina Kiadó