Lehozni a Napot az égről?
Az Európai Unió fúziós kutatási programja hozzájárulhat a földi fúziós erőművek megvalósulásához..
Az ITER komplexum a dél-franciaországi Cadarache-ban, 2015 szeptemberében.
Fotó: iter.org
A világ egyik legnagyobb kutatás-fejlesztési együttműködésében az MTA Wigner Fizikai Kutatóközpont és a Budapesti Műszaki és Gazdaságtudományi Egyetem munkatársai is részt vesznek. Hogyan zabolázzuk meg a csillagok energiáját, és milyen szerepet játszanak ebben a magyar kutatók?
A fúziós energiatermelés régi vágya az emberiségnek, egy pozitív energiamérlegű fúziós erőmű megépítését célzó kutatások régóta folynak. A cél megvalósítására összefogtak a Föld népességének több mint felét befogadó országok, és létrehozták az ITER projektet, a világ egyik legnagyobb kutatás-fejlesztési együttműködését. Tagjai az Egyesült Államok, India, Dél-Korea, Japán, Kína, Oroszország és az Európai Unió.
A fúzió könnyű atommagok egyesítését jelenti, a hozzánk legközelebb eső természetes fúziós reaktor pedig nem más, mint a Nap. A Nap fúzió segítségével állítja elő azt a hatalmas mennyiségű energiát, amely a földi életet is táplálja. Éjszaka felnézve a derült égboltra ezernyi fúziós reaktort láthatunk, hiszen az univerzum összes csillaga ilyen módon állítja elő az energiát. A számos működő példa, és az évtizedek óta folyó kutatások ellenére is egy pozitív energiamérlegű, az atommagok egyesülésén alapuló reaktor földi megvalósítása még várat magára. Gyakorlatilag a Napot szeretnénk lehozni a Földre, ami nem kis feladat, viszont biztonságos, kifogyhatatlan és környezetbarát energiaforrást kínál.
A sokféle fúziós reakció közül a Földön más folyamat valósítható meg gazdaságosan, mint ami a Napban történik. A Napban főképpen két egymással párhuzamosan zajló energiatermelő ciklus termeli a fúziós energiát. Az egyik a proton-proton (pp) ciklus, a másik a szén-nitrogén-oxigén (CNO) ciklus. Földi körülmények között két hidrogénizotóp, a deutérium és a trícium fúziója (D-T reakció) valósítható meg a legkönnyebben, ennek reakcióterméke egy héliumatommag és egy neutron.
A deutérium a Földön szinte mindenhol megtalálható, mivel nagyjából minden hatezredik vízmolekula egyik hidrogénje deutérium. A trícium ezzel szemben csak nyomokban fordul elő, ezért azt meg kell termelni, szakszóval „tenyészteni” kell. Ez a fúziós reakció termékeként előálló neutronnal úgy lehetséges, hogy egy lítiumatommagot alakítunk át magreakcióval héliummá és tríciummá. Ilyen módon a reaktor magának termeli majd az üzemanyag egy részét lítiumból, ami szintén korlátlan mennyiségben megtalálható, kivonható a tengervízből, illetve számos vulkanikus kőzetből.
A megvalósításánál a nehézséget az okozza, hogy a D-T fúzió létrejöttének a valószínűsége 100 millió fokos – a Nap magjánál tízszer melegebb – közegben a legnagyobb. Ilyen magas hőmérsékleten az anyag teljesen ionizált állapotba kerül, azaz az atommagokról leszakadnak az elektronok, ezt az állapotot hívják plazmának. A magas hőmérsékletű plazmát földi körülmények között mágneses térrel kell összetartani ahhoz, hogy ne érjen hozzá a berendezés falához. Ilyen mágneses összetartású kísérleti berendezésből jelenleg nagyjából negyven üzemel szerte a világon.
Az ITER (International Thermonuclear Experimental Reactor – Nemzetközi Kísérleti Termonukleáris Reaktor) is egy mágneses összetartású kísérleti berendezés, megépítése mérföldkőnek számít a fúziós kutatásokban, mivel számos fizikai folyamat, illetve műszaki megoldás itt lesz először kipróbálható. A cél többek között, hogy 50 MW fűtőteljesítmény mellett 500 MW fúziós teljesítményt produkáljon, ezzel demonstrálva a fúzió energetikai felhasználásának lehetőségét. Itt tesztelik először a tríciumtenyésztési módszereket, és itt alapozhatják meg egy hálózatra is termelő energetikai reaktor koncepcióját.
Az Európai Unió fúziós kutatási programjának tagjaként az ITER projektben több mint tíz magyar fizikus és mérnök járul hozzá számos részfeladat megvalósításán keresztül ehhez a hatalmas – az Eiffel-toronynál háromszor nehezebb – Dél-Franciaországban épülő berendezéshez. A magyar csapat legnagyobb feladata olyan komponensek, kábelek, kábelvezetők, csatlakozók, vákuumátvezetők fejlesztése, amelyekkel a berendezés magjában, a 100 millió fokos plazma közelében elhelyezett mérőeszközöket bekábelezik. Az alkatrészeknek olyan speciális követelményeknek kell megfelelniük, mint például, húsz évig tartó, karbantartás nélküli üzemelés, a csatlakozókat úgy kell megtervezni, hogy távvezérelt robotokkal cserélhetőek legyenek.
A magyar csapat ehhez a munkához – egy nemrégiben aláírt megállapodás keretében – több mint 400 000 euró támogatást kap 2016-ra és 2017-re. A kutatók még két ITER-diagnosztika, a plazma fúziós teljesítményét mérő, úgynevezett töltéscsere-spektrométer és a plazma sugárzását mérő bolométer-tomográf fejlesztésében is részt vesznek, amihez szintén tetemes összegű támogatást nyújt az Európai Unió.
Az ITER a dél-franciaországi Cadarache-ban található berendezésénél öt magyar mérnök is dolgozik a helyszínen. Bede Ottó gépészmérnök szerint, felemelő érzés magyar mérnökként részt venni a világ egyik legnagyobb kutatás-fejlesztési projektjében: „Mindenki örömmel végez olyan feladatot, aminek van értelme, kézzelfogható eredménye. Különösen jó érzés, hogy a munkánk hasznán nem egy szűk befektetői kör fog osztozni, hanem az egész emberiség. Itt Cadarache-ban nap mint nap megéljük, ahogy a nemes cél érdekében összefogó kollégák felülemelkednek a napi politikai vagy akár a több évtizedes nemzetközi feszültségeken, ellentéteken.‟
Az ITER építése összesen 6,6 milliárd eurójába kerül az Európai Uniónak; összehasonlításképpen az Airbus A380-as utasszállító gép fejlesztése 25 milliárd euróba került. Egy EU-s állampolgárnak az ITER építése körülbelül évi 1 euró költséget jelent. Az ITER-hez kapcsolódó fúziós kutatási programot az Európai Unióban az Eurofusion konzorcium fogja össze, amelyre az Unió évi 140 millió eurót fordít.
Forrás: mta.hu