Irányított evolúciós folyamatok

Az evolúciós folyamat nemcsak élőlényekben mehet végbe, hanem akár kutatók által irányított módon úgy is, hogy kiragadják egy élőlény génjét és irányított evolúciónak vetik alá.

Hibajavítás a DNS szakaszán
Fotó: Profimedia
Ez az alapja az irányított fehérjeevolúciónak – magyarázta Pál Gábor, az ELTE Biokémia Tanszékének professzora annak kapcsán, hogy ilyen eljárásokért ítélték oda a 2018-as kémiai Nobel-díjat Frances H. Arnold és George P. Smith amerikai, valamint Gregory P. Winter brit tudósnak.
A Svéd Királyi Tudományos Akadémia indoklása szerint a három tudós az evolúció mechanizmusát felhasználva ért el úttörő eredményeket kutatásaiban, amelyek gyakorlati haszna ma már a gyógyszergyártáson át az üzemanyag-előállításig megfigyelhető.
A biológiai evolúció alapja az élőlények örökletes tulajdonságait kódoló DNS generációról generációra történő apró megváltozása. Ennek révén nagyon lassan megváltozik minden faj DNS-ben kódolt biológiai információja, az élőlények lassan átalakulnak, „hozzáidomulnak” változó környezetükhöz. Az információ megváltozása részben a DNS-ben kódolt fehérjék megváltozását jelenti – magyarázta az MTI-nek Pál Gábor.
Mintegy 30 éve jutottak arra a gondolatra, hogy ez az evolúciós folyamat nemcsak élőlényekben mehet végbe, hanem akár élőlényekből kiemelt gének közvetlen, kutatók általi megváltoztatásával is megvalósítható. Ez vezetett az irányított fehérjeevolúció létrehozásához – mondta Pál Gábor. Hozzátette: George P. Smith volt az, aki az irányított fehérjeevolúció koncepcióját és a legelterjedtebb technológiáját megalkotta. Ez a fág-bemutatásnak nevezett eljárás, amelyben egy bakteriofágot (baktériumot fertőzni képes vírust) használnak új fehérjék kifejlesztésére.
A professzor szerint George P. Smith ötletének zsenialitása abban állt, hogy rájött, hogyan lehet egy fehérje génjét és az általa kódolt fehérjét fizikailag összekapcsolni egy vírusrészecske által. A vizsgálni kívánt fehérje génjét Smith egy vírus burokfehérje génjéhez kapcsolta. Amikor ezt a módosított vírus DNS-t baktériumokba juttatta, a fertőzött sejt olyan vírusokat termelt, amelyek a felszínükön megjelenítették a vizsgálandó fehérjét, miközben belsejükben hordozták annak génjét. Ez volt a belépő az első irányított fehérjeevolúciós eljárás megalkotásához.
A következő lépésként a tudós előállította egy adott fehérjegén többmilliárd eltérő változatát. „Ha létrejön egy ilyen DNS-könyvtár és ezt bejuttatjuk baktériumsejtekbe úgy, hogy minden sejt csak egyetlen DNS molekulát fogadjon be, akkor a baktériumsejtek a DNS-információ alapján többmilliárd különböző fehérjevariánst fognak előállítani úgy, hogy mindegyik variáns a saját génjéhez lesz kötve a vírusrészecske által. Ez az irányított fehérjeevolúció kulcsmotívuma – magyarázta Pál Gábor.
„Ezek után általunk irányított módon valamilyen fehérjetulajdonságra szelektálunk és kiválogatjuk az adott tulajdonsággal rendelkező variánsok csoportját” – mondta, hozzátéve, hogy a szelekciót többször egymás után el lehet végezni.
A professzor szerint ennek számos haszna van. Ha a fehérje eredeti funkciója alapján szelektálunk, akkor nagyon gyorsan fel tudjuk tárni, hogy a fehérje mely részei látják el az adott funkciót: ezek lesznek azok, amik megőrződnek egy ilyen vizsgálatban. Így megérthetjük, hogy a fehérjék miként működnek. Másrészt, ha új funkciókra szelektálunk, akkor olyan fehérjéket hozhatunk létre, amik a természetben nem léteznek. Így bármelyik természetes fehérje ellen evolválhatunk (kifejleszthetünk) szelektíven csak ahhoz kötődő és azt gátló fehérjéket. Így minden fehérje esetében feltárható, hogy mi annak a fő biológiai feladata. Márpedig a biológiai folyamatok mindegyike fehérjék kölcsönhatásán alapul.
A legtöbb betegség mögött kóros fehérje-fehérje kölcsönhatások állnak. A legígéretesebb terápiás út az ilyen kölcsönhatások kialakulásának megakadályozása az adott célra kifejlesztett kötőfehérjékkel. Jelenleg a legmodernebb gyógyszerek a terápiás monoklonális ellenanyagok, amelyek egy-egy olyan fehérje-fehérje kölcsönhatást tudnak megakadályozni, amelyek kulcsszerepet játszanak valamilyen daganatos vagy autoimmun betegségben.
A brit Gregory P. Winter az evolúciós technológiát az ellenanyagokra alkalmazta. Munkássága nyomán lehetővé vált az élő szervezeten kívüli, célzott ellenanyag-fejlesztés. Ezzel a megoldással olyan, az emberi ellenanyagoktól megkülönböztethetetlen felépítésű fehérjék hozhatók létre, amelyek szinte bármilyen, akár a természetből nem ismert kötőtulajdonsággal rendelkezhetnek. Jelenleg a hagyományos és az új, irányított evolúciós eljárást egyaránt alkalmazzák monoklonális terápiás ellenanyagok kifejlesztésére, de a modernebb eljárás kezd előtérbe helyeződni.
Frances Arnold az enzimek irányított evolúciójáért részesült az elismerésben. Az enzimek kémiai reakciókat gyorsítanak nagy hatékonysággal és rendkívüli szelektivitással – mutatott rá Pál Gábor. A fág-bemutatás nem bizonyult megfelelő eljárásnak enzimek evolválására. Frances H. Arnold kidolgozta az első működőképes irányított enzim-evolúciós eljárásokat. Ezekkel lehetővé vált olyan kémiai reakciók gyorsítása, amelyekre korábban nem volt hatékony vagy nem is létezett katalizátor. Ennek az áttörésnek a gyakorlati haszna az emberiség számára szinte beláthatatlan horderejű – hangsúlyozta Pál Gábor.
A szintetikus vegyipari eljárások, amelyekkel az anyagokat előállítják, sokszor nagy környezetterheléssel járnak. Az irányított fehérjeevolúció számos ilyen esetben új, környezetbarát lehetőséget biztosíthat. Ilyen például az újfajta üzemanyagok előállítása vagy a mostaninál hatékonyabb gyógyszermolekula-szintézis. A felhasználási területek számának csak az emberi fantázia szabhat korlátokat – magyarázta Pál Gábor.